LaGrange High School

FOR THE

Town of LaGrange

(LaGrange, Wyoming)

B & A Project Number: 085-013-06

Prepared by:

Baker & Associates Inc.

120 East 16th Street, Suite A
Scottsbluff, Nebraska 69361

October 25, 2006
Overview

The LaGrange Elementary Building was originally constructed in 1928. The classroom portion is two stories with the entrance approximately 21 inches above grade with a partial basement. The classroom portion is masonry exterior walls with dimension lumber framed floors and low sloping roof. The original school building design anticipated the construction of a gym which was constructed either in 1928 or shortly afterward to the same quality of construction. Although there is face brick above the gym roof, the now concealed wall surface to the gymnasium may have been either common brick or clay tile. The gym was originally one story over a crawl space with a steel barrel truss supporting wood purlin roof framing.

It is our understanding the Goshen County School District is in the process of remodeling and adding on to the existing LaGrange Elementary School. The work is now scheduled to begin in the 2007-2008 school year. Part of this project is to abandon the existing high school and sever connections between the elementary school and the high school.

It is also our understanding that the Town of LaGrange and the School District have come to an agreement to save the original two story portion of the high school. The portions of the building to remain would require some modification at the limits of demolition. This construction and remodel would be funded primarily through a Community Facility Grant. The Town has suggested options that would salvage portions of the original high school gymnasium.

The area of the first floor is approximately 6,950 sf and the area of the second floor is approximately 3,790 sf. Following are floor plans for the existing high school building.
SECOND FLOOR PLAN

ELECTRIC SYMBOL LEGEND:

1. LIGHT SWITCH
2. ELECTRICAL OUTLET
3. TELEPHONE OUTLET
4. ILLUMINATED EXIT SIGN
5. EXHAUST FAN
6. THERMOSTAT
7. CLOCK
8. FIRE ALARM
9. BELL

KEY NOTES:

A. CAST IRON RADIANT HEATERS
B. FULL HEIGHT STORAGE CABINET
C. CHALKBOARD
D. DRINKING FOUNTAIN
E. ELECTRIC WATER COOLER
F. LOCKERS
G. LAUNDRY
H. BUILT-IN COUNTERS WITH CONNECTIONS
I. BUILT-IN WALL CABINETS
J. HEATING UNIT ABOVE
K. EMERGENCY ESCAPE CHUTE
L. EXTERIOR STEEL STAIRS
BASEMENT FLOOR PLAN

ELECTRIC SYMBOL LEGEND:

1. LIGHT SWITCH
2. ELECTRICAL OUTLET
3. TELEPHONE OUTLET
4. ILLUMINATED EXIT SIGN
5. EXHAUST FAN
6. THERMOSTAT
7. CLOCK
8. FIRE ALARM
9. BELL

Project Title: HIGH SCHOOL FEASIBILITY STUDY
Town of Lagrange

Sheet Title: BASEMENT PLAN EXISTING BUILDING

Completion: STUDY
Date Issued: 10/26/06
General Condition of Existing Building

The building is typical of construction at the time. The basement walls are poured concrete in good shape, with exceptions noted in the structural review. The exterior walls are masonry with a brick veneer and a clay tile interior with plaster applied to the interior surface. Most of the plaster is in good shape with relatively few cracks and water damage.

All of the buildings can be considered ordinary construction per the NFPA and International Building Code Type III-B construction. This is a very flexible classification for tenant finish construction.

The classroom roof slopes from the east to gutters on the west wall. The roof is in good shape, but a relatively flat or ponding area near the eave may indicate a roof problem at some time in the past. The gym roof is a barrel vault which slopes to the north and south. The roof membrane is in very good shape but does not have a cap flashing on the walls over the flashing termination.

The brick design incorporates numerous corners and an unusually large number of steps or setbacks of the brick. The upper portions of the wall, especially under the gutters, show significant deterioration with open masonry joints and some spalled brick. The masonry joints are also deteriorated at the corners and the numerous vertical steps. The parapet walls are capped with solid concrete blocks approximately 24 inches long which also show significant deterioration in the mortar joints. Extensive tuckpointing or and other masonry repairs are required to retain building integrity.
After the new gymnasium was built in the 1950's, the original gym was converted to a kitchen and cafeteria and a second floor for a library, home economics, and two other classrooms. To access the classrooms, the floor sloped down over two feet in 12 feet of run in order to provide adequate headroom to walk under the existing steel truss. The ramp slope exceeds all code safety standards. The classrooms and library do not have appropriate natural or mechanical ventilation. Access to the storage attic of the 1972 addition is through walls that compromise the fire area separation. The other original openings have been covered with plywood which is also not adequate for fire separation. There is a good quality metal door separating the cafeteria from the 1972 gymnasium addition and the currently used classrooms.

Requirements for Extended Use

The existing building may be required to meet all current code requirements for any proposed new use. In addition, the adjacency to the proposed new use must not cause the existing Elementary School to be in any code violation.

Accessibility Issues

None of the existing building meets the current Uniform Federal Accessibility Standards. The only toilet facilities are in the basement and require a step up from the basement floor. There are several strategies to meeting the standards.

The most cost prohibitive approach would be to install an elevator in the building to provide access to most if not all the levels. An elevator with the attendant shaft could cost as much as $200,000 and would require annual maintenance, inspections, and a dedicated phone line for emergency contact if someone is trapped inside the elevator.
An alternative would be to not attempt to make the second floor or the basement accessible. This approach would be acceptable if the floor over the lunchroom were removed or left only as ceiling framing or if any replacement of the gymnasium did not have a second floor. If only the original portion of the building second floor is used as tenant space, the building would qualify for an exemption in the UFSA: floors less than 4,000 sf in area are not required to be accessible. The basement would have to be used only for service to be exempt. If the basement is only for service, the window wells could be blocked in and filled. A door would be required at the top of the stairs.

The main entrance is about 20 inches above the grade. To make the east entrance accessible, the existing window wells should be abandoned and filled. The sidewalks could slope from about 30 feet out up to an almost flat pad in front of the door. With this design, no ramps, rails or steps are required. The entrance door, landing and the first flight of stairs up from the main floor would all have to be rebuilt. Assuming an aluminum storefront entrance is installed, the entrance renovation would cost less than $50,000.

Any new construction on the west end of the building could incorporate an ADA accessible entrance as long as it did not conflict with the School District’s plans for the Elementary School.

Washrooms would also be required on the main floor. A pair of accessible washroom totaling 128 square feet could be installed for approximately $20,000. Storage Room 112 could be modified to two accessible washrooms if the Entry is raised. Signage, if installed, is required to meet UFAS standards.
Options for Separation from Elementary School

If the building were converted to offices with an accessory dining facility, an occupancy fire wall separation would be required between the old school and the Elementary School. However this occupancy fire wall separation would not be required to be constructed if a fire suppression system was installed. Schools are now generally required to have automatic fire sprinklers, and the use of fire sprinklers in this building should be explored as one option.

For code analysis purposes, removal of any portion of the gymnasium would create a property line between the two buildings. The actual property line could then be recorded to meet the wall and opening construction for each of the buildings. For the code analysis purposes below, it is assumed that the property line would be midway between the two buildings.

The proposed reuse would also have to meet current accessibility standards. At this time there are numerous issues that would have to be addressed. Prior to demolition of the gym, it will be necessary to better determine how the wall was constructed and whether the brick can be cleaned or whether the wall will need to be covered with another material for aesthetics.

It is our understanding that the current School District’s plans are to provide a driveway between the two buildings which would require removal of the gymnasium and relocation of the playground. However, the Town has proposed additional options for the scope of the old school building conversion.
Option 1. Retain the *gymnasium* and restore original block walls to occupancy fire wall separation or install a common automatic fire sprinkler system though out the buildings. This option would require a property line be created along the center of the walls common to the Elementary School and the High School. The Town and the School District would enter a condominium property agreement. The Town’s attorney should be consulted to see if this option lies in the Town’s best interests.

Option 2. Remove a portion of the gymnasium and install *handicap* access to the west. The remaining portion of the gymnasium would be restored to its original state with the demolition of the kitchen and the upstairs rooms. Openings in the new construction may have to fire resistive labeled and/or restricted in area to less than 45% of the wall area. Fire code may require a two story atrium to be sprinklered.

Option 3. Remove the entire gymnasium. This option separates buildings sufficiently that the existing hallway openings that are at least 48 feet from school need not be fire *resistive* construction. The existing fire exit door, approximately 21 feet from school, may have to be replaced for fire resistive construction.

Following are floor plans for the options listed above. One other option not fully explored is to remove the entire gymnasium and install a new addition with handicap access flush with the west wall of the existing High School. Assuming a property line midway between the buildings, this option would restrict unprotected openings to less than 15% of the wall and protected openings to 45%. This is adequate *area* to permit fenestration *similar to the* existing building.
ELECTRIC SYMBOL LEGEND:

1. LIGHT SWITCH
2. ELECTRICAL OUTLET
3. TELEPHONE OUTLET
4. ILLUMINATED EXIT SIGN
5. EXHAUST FAN
6. THERMOSTAT
7. CLOCK
8. FIRE ALARM
9. BELL

KEY NOTES:

A. CAST IRON RADIANT HEATERS
B. FULL HEIGHT STORAGE CABINET
C. CHALKBOARD
D. DRINKING FOUNTAIN
E. ELECTRIC WATER COOLER
F. MECHANICAL CHASE
ELECTRIC SYMBOL LEGEND:

1. LIGHT SWITCH
2. ELECTRICAL OUTLET
3. TELEPHONE OUTLET
4. ILLUMINATED EXIT SIGN
5. EXHAUST FAN
6. THERMOSTAT
7. CLOCK
8. FIRE ALARM
9. BELL

KEY NOTES:

A. CAST IRON RADIANT HEATERS
B. FULL HEIGHT STORAGE CABINET
C. CHALKBOARD
D. DRINKING FOUNTAIN
E. ELECTRIC WATER COOLER
F. MECHANICAL CHASE
Limits of Demolition

If any portion of the gymnasium is demolished, the remaining brick walls will need to be patched. Brick may be salvaged from the demolition to be used in the patchwork. If an adequate amount of brick cannot be salvaged, new brick will need to be used. The original High School was constructed with a brick size that is no longer commonly used. Specialty brick will need to be ordered to match the existing brick. If large areas of patchwork are required, an alternative could be to use a modern brick in complimentary colors. The new brick could be installed in accent bands or in a similar fashion as to not detract from the existing structure. If new exterior walls are constructed, an accent brick would be suggested.

Value of Renovated High School Building

The first floor contains four suites:

<table>
<thead>
<tr>
<th>Classroom</th>
<th>Size</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>20' x 32'</td>
<td>640 sf</td>
</tr>
<tr>
<td>104</td>
<td>20' x 24'</td>
<td>480 sf</td>
</tr>
<tr>
<td>105</td>
<td>20' x 34'</td>
<td>680 sf</td>
</tr>
<tr>
<td>106</td>
<td>20' x 30'</td>
<td>600 sf</td>
</tr>
<tr>
<td>Total leasable area</td>
<td></td>
<td>2,400 sf</td>
</tr>
</tbody>
</table>
The second floor contains five suites:

- Classroom 202 16' x 20' 304 sf due to corner access to 203
- Classroom 203E 20' x 20' 400 sf
- Classroom 203W 16' x 34' 544 sf
- Classroom 204 20' x 38' 768 sf
- Classroom 205 20' x 32' 640 sf

Total leasable area 2,656sf

Possible addition in the old gymnasium area with central access:

- North room 20' x 25' 420 sf 80 sf deducted for washroom
- South room 20' x 25' 420 sf 80 sf deducted for washroom

Total leasable area 5,056 sf

Current replacement cost for building shells of 5,056 square feet would be not less than $70/sf. The building as a structural shell is worth approximately $350,000 which would allow for the equivalent expense in renovation and equipment upgrades. Assuming $70/sf is invested in the building, to amortize a 7%, 30 year mortgage, annual lease payments would have to be $14/sf, or approximately half the cost of new construction.

A one story in-fill of the gymnasium area up to 1,248 sf should be budgeted at $125,000.
Structural Systems

The basement walls do not have any damage except for a cracked lintel over the one of the interior openings. These cracks appear to have been in place for a long time period. The cracks should be filled in with an adhesive to prevent any further cracking to occur.

The remaining basement walls appeared sound and did not have any damage other than some slight indentations on the surface. An example of the indentations is shown in the second photo above. The concrete appears to have spalled creating the indentations. The indentations should be patched to prevent further spalling from occurring.

The cafeteria floor is supported by wood framing over a crawl space. The wood framing is in good shape and does not appear to have any damage. There is no noticeable sagging in the flooring.
The exterior stair column on the north side of the building has a kink near the bottom of the column as shown in the following photo. Based on the appearance of the column, it appears that the column was installed with this kink in place. The column should be replaced with a plumb column.
The exterior masonry walls appear to be in good shape. There is no noticeable cracking in the walls. The brick veneer has several locations where mortar is missing. The missing mortar should be replaced in order to prevent moisture from entering the wall cavity. The following photo shows an example of the missing mortar.
The south wall of the cafeteria had windows added in the existing masonry wall at some time based on the appearance of the lintel as shown in the following photo. The mortar joints around the lintel should be filled in with mortar.

The roof appears to have spots on the west end of the roof where water has accumulated as shown on the second photo above. The south west corner and the northwest corner of the roof both show similar black marking which indicate water accumulates in the low spots of the roof. This is most likely a result of inadequate slope for the roof to properly drain. Water will continue to accumulate at these corners unless some corrective measure is taken to provide a proper slope for drainage.

There is one area inside one of the classrooms on the second floor where the ceiling tiles show damage from water (see following photo). The roof framing does not appear to be damaged from the water (this is the barrel vaulted truss area). The walls do not have any damage from the water.
The wood floor framing in the science room on the second floor (south east corner) has been damaged from water. The water has caused the floor to have a "soft feel" while walking over this area. The floor joists in this area may need to be replaced as a result of this water damage.

The floor joists beneath the science room are reported to be 2x14 joists spaced at 24 inches on center. The joists span from wall to wall. This is typical of the floor framing in the building.

Overall, the wood floor framing is in good shape but the superimposed load capacity would be limited to approximately 40 psf. This would limit the potential uses of the building for applications that would require a maximum live load of 40 psf. Examples of 40 psf live loads (as defined by the International Building Code) are classrooms and residential living space. The International Building Code requires a 100 psf live load for public assembly area and retail store space. The International Building Code requires a 125 psf live load for light storage. Without strengthening the floor, the building could not be used for storage or retail space.
Structural Building Modifications

Option 1 would involve filling in the existing wall opening and using the original west wall of the original school as a fire separation wall. This option would not require any structural modifications as only wall openings are being filled.

Option 2 would require a new fire separation wall to be built near one of the steel roof trusses. The second floor (currently used as classrooms) would be removed above the cafeteria/kitchen area. This would match the original design of the building as this is where the original gym was located. This option would require slight modifications to the roof where the new fire separation wall is constructed. A new wall and footing would need to be built at the west end of the building.

Option 3 would require all of the existing structure to be removed within the original gym area. This would result in a complete separation between the original building and the west expansion of the 1950s. This option would not require any structural modifications to the original building other than in filling openings as a result of removing the existing structure.
Existing Mechanical Conditions

The existing boiler located in the basement mechanical room is a fuel oil, steam-producing Bryan boiler that was installed in approximately 1983 and is good working order. The boiler is a low-pressure boiler rated at a maximum steam pressure of 15 psi and has an input of 15 gallons per hour of fuel oil (2106 mbh) with a heating output of 1680 mbh. The boiler feeds steam throughout the original high school to all the existing cast iron radiant heaters. The heaters are located on exterior walls of the classrooms and one in the entryway. Condensate from the heaters then drains by gravity back to the mechanical room where a condensate pump feeds the water back to the boiler. The existing combustion air system for the boiler consists of a 48"x24" stationary louver that is manually opened and closed. This system does not meet current code. By the 2003 International Mechanical Code the existing louver is far too small for a boiler of that size. The IMC also requires that either two openings be provided or that ductwork from the louver is routed to 12" from the ceiling and another 12" of the floor. Motorized dampers on the combustion air ducts are required to be interlocked with the boilers gas train such that the dampers are proven open prior to the boiler firing and close when the boiler is not firing.

There is currently no heat in the kitchen or the cafeteria area on the first floor of the barrel roof addition. The four classrooms on the second floor of this addition have a horizontal propane furnace that is suspended overhead in the hallway. The furnace then feeds ductwork into each space.
The existing above ground fuel oil tank that supplies the boiler is located adjacent to the boiler room on the north side of the building. This fuel oil storage tank is a single wall tank with a 2000-gallon capacity. Currently the tank does not meet some code requirements set forth by the International Fire and Mechanical Code, NFPA, and the Wyoming Environmental Quality Act. Per code the fuel oil storage tank shall be either be of double wall construction or be surrounded by a dike capable of holding at least 100% of the tank's capacity. Per code, the underground piping must also be double wall with a leak detection system. The vent pipe for the tank must also be raised to 12' above finished grade to meet current codes. Should the tank change ownership from the school district to the Town of La Grange, the Wyoming Department of Environmental Quality (DEQ) must be notified. A spill prevention control and countermeasure plan (SPCC) must also be submitted.

Domestic water for the facility enters the basement of the original high school without a code required backflow preventer. This water entry serves the original high school, the barrel roof addition and the elementary school addition. The water is currently bypassing a water softener and then tees off between domestic hot for the high school and domestic cold. A fuel oil domestic hot water heater is located in the boiler room but has been capped off and is no longer operational. This water heater originally served the high school. The barrel roof and elementary school additions are then supplied with domestic hot water by a water heater located in the “shoe room” of the new gym. This water heater does not have a recirculation pump associated with it and takes a tremendous amount of time to deliver hot water to the end users. Due to the time of delivery a supplemental electric water heater was installed in the kitchen.
The existing kitchen consists of a three compartment sink, dishwasher, and associated electric water heater separate from the supplemental water heater stated above, ten burner range with two ovens, convection oven, grease hood and a under hood fire suppression system. Per the 2003 International Plumbing Code the three compartment sink requires a grease interceptor. The interceptor then is required to be accessible such that it can be cleaned when required. The existing kitchen grease hood does not have the code required make up air. Currently when the hood is turned on the fan pushes air straight outside through a louver but has no means of replenishing the air. Per the 2003 International Mechanical Code the amount of makeup air shall be equal to the amount of kitchen exhaust air. The means of makeup shall also be interlocked with the kitchen exhaust system.

General Mechanical Recommendations

Should any of the three options presented be accepted there are certain areas of the building that should be addressed during the remodel. The first is the domestic water entry. If the buildings will be owned by two separate entities a separate water service will be required for the elementary school. The new service will require an additional tap to the city and the fees that apply. A new water heater will also be required to replace the existing fuel oil water heater located in the mechanical room. This will restore hot water to the original high school. During the remodel as much as possible of the existing galvanized domestic water piping should be changed out to copper. The line from the domestic water heater in the “shoe room” of the elementary addition will also need to be capped so that it is not supplying water to a second owner. A backflow preventer will also need to be installed on the existing water entry to protect the city’s water supply. The combustion air for the existing boiler should also be modified to meet current code requirements. Depending on the local authority having jurisdiction,
the fuel oil storage and distribution system could be grandfathered as is, or any of the
items mentioned above may need to be remedied.

Mechanical Recommendations Option #1

If option #1 were chosen we would recommend that the commercial kitchen equipment be removed and replaced with residential style kitchen equipment. This would include a two-compartment sink with a four burner stove top and hood. This would avoid expensive upgrades to meet current code requirements for the grease interceptor and makeup air for the kitchen exhaust. For this option heat would be provided to the first floor from the existing boiler. The condensate would then be sloped or be pumped back to the boiler room as required.

Mechanical Recommendations Option #2

This option would require the horizontal furnace suspended in the second floor of barrel roof to be removed. Heat would then be provided to the atrium by the existing boiler. The condensate would be sloped or be pumped back to the boiler room as required. The supplementary domestic water heater from the kitchen would be relocated to the boiler room to replace the existing water heater.

Mechanical Recommendations Option #3

Recommendations for this option would consist of those stated in the general recommendations sections with the kitchen supplementary water heater being relocated to the boiler room to replace the existing water heater.
Existing Electrical Conditions

We do not anticipate that the existing 400 amp electrical service will be large enough to continue to serve the gymnasium, elementary school, and a renovated high school building. A second service will more than likely be required, unless the owner chooses to implement option 3. If a new service is required, then the panels serving the existing high school would need to be removed from the existing electrical service and connected to this new service.

General Electrical Recommendations

The quantity of power and phone/data outlets is insufficient for typical office applications. Wiring for additional devices may run in new walls or via surface-mounted raceways. We recommend utilizing a dual-channel Wiremold or equivalent raceway. Such a raceway eliminates unsightly surface-mounted conduit and simplifies expansion/modification to accommodate future needs. Additionally, about 15% of the existing outlets do not meet code criteria and should be replaced or removed.

Approximately 50% of the existing luminaries are recessed troffers and can be reused. We recommend replacing the surface-mounted luminaries with new ones and then adding additional luminaries in order to bring the light levels up to today's standards. The light switches in the classroom areas need to be replaced with new switches. We recommend using a Wiremold type raceway for the conductors to the new switches. New egress lighting and exit signs will be required. Finally, new exterior lighting will be needed. At a minimum, exterior lighting must be provided at all points of egress. Parking lot lighting may also be desired.
The building's original wiring has a cloth sheathing. We recommend replacing this original wiring wherever it is accessible and wherever circuits using this type of wire are modified. However, the majority of the wiring installed recently (since the elementary school addition) meets current codes and can be re-used. Most of this wiring has been installed in surface mounted conduit. It may be desirable to remove this conduit and associated wiring for aesthetic reasons.

The existing fire alarm system, which is shared with the elementary school and gymnasium, is antiquated and needs to be removed. If fire detection is either desired by the owner or required by architectural classification, then a new system will be required.

Electrical Recommendations Option #1

All the general recommendations listed above apply. A new electrical panel would need to be added. If air conditioning is added to the building, then the existing electrical service will be insufficient.

Electrical Recommendations Option #2

All the general recommendations listed above apply. The quantity of new luminaries that would be required decrease by about 25%. A new electrical panel would need to be added for this option as well. If air conditioning is added to the building, then the existing electrical service will be insufficient. However, if air conditioning is not added, then the existing 400A service will probably suffice. In that case, an additional meter may be desired by the owners to facilitate separate electrical billing.
Electrical Recommendations Option #3

All the general recommendations listed above apply. The quantity of new luminaries that would be required decrease by about 50% compared with Option #1. The existing panel would probably be sufficient for the needs of this space, and a new panel would not be required. If air conditioning is added to this option, then the existing electrical service will probably be insufficient. However, if air conditioning is not added, then the existing 400A service will suffice. As with Option #2, an additional meter may be desired by the owners to facilitate separate electrical billing.

Summary

In conclusion, the building appears to be in excellent condition for its age. With a minimal amount of modification portions of the gymnasium could even be salvaged. Relatively minor modifications need to be made to the building's mechanical and electrical systems for the Town's intended use. The structural systems are in excellent condition given the age of the building. Major tuckpointing should be initiated immediately to prevent further water intrusion and degradation of the wood structure.

The largest hurdles to tackle are accessibility and fire suppression. If the Wyoming State Fire Marshal allows the building to be grandfathered, the fire suppression issues are relatively minor. Following are some estimates of probable costs associated with the renovation of the existing High School Building.

Once the demolition activities are completed and the site is cleared for access, renovation activities could be completed in approximately 90 days. After these modifications are completed, the facility should require only minimal preventative maintenance for a number of years.
Estimated Annual Utility Costs

- Electrical use if building is vacant: $3,000
- Electrical use if building is occupied: $12,000

Estimated Costs for Construction

Demolition
- Gymnasium demolition: 2,880 sq ft, $18.00/sq ft, $51,840

Addition
- Small addition, one story: 672 sq ft, $25.00/sq ft, $17,300
- Large Addition, one story: 1,248 sq ft, $20.00/sq ft, $24,960

- Replace exterior fire escape with interior stair: 160 sq ft, $125.00/sq ft, $20,000
- Exterior tile and accessible east entrance: $50,000
- Washroom in existing space: $10,000

Insulate exterior wall
- 6,000 sq ft, $40.00/sq ft, $240,000

Tenant Space Upgrades
- New flooring: $4.00/sq ft
- Painting: based on floor area, not wall area, $1.50/sq ft
- Ceiling: remove old tiles & replace with new, $2.00/sq ft
- Ceiling: replace entire ceiling grid including lights, $5.00/sq ft

Elevator
- Elevator and exterior shaft including power: $200,000
- Elevator and shaft as part of an addition: $100,000

Fire Suppression
- Automatic fire sprinkler as part of existing school: 12,900 sf, $2.00/sf, $25,800
- Fire Alarm: 12,900 sf, $1.25/sf, $16,125

Masonry Restoration
- Cut and repoint: 6,000 sf, $25.00/sf, $150,000
- Seal masonry: 6,000 sf, $7.00/sf, $42,000
- Replace upper two feet of masonry veneer: 500 sf, $18.00/sf, $9,000
- New cap flashing: 310 sf, $15.00/sf, $4,650

Boiler
- New boiler: $15,000
- New boiler with existing piping: $36,000

Air Conditioning
- Use with existing heating system: $32,000
- Use with new boiler and fan coil units: $18,000

Electrical Service
- New electrical service & branch circuit panel: $15,000

New Fuel Oil Tank
- Double wall fiberglass fuel tank: $9,500

Water Service Separation
- New water tap for Elementary School: $1,500
- New water heater and recirculation pump: $4,500

Site Improvements
- Concrete Parking Surfaces: $6.09/sq ft
- Concrete Sidewalk Surfaces: $4.71/sq ft
- Landscaping allowance: $5,000

Contingency Costs

- Engineering Fees: 15% of total cost

LaGrange High School
Town of LaGrange

Page 31 of 31
Date of Print: 10/30/2006